Decreased expression of WNT inhibitors is a predominant mechanism causing ectopic activation of WNT signaling in glioma. Epigenetic silencing of WNT pathway inhibitor genes by supermethylation of their promoters accounts for the enhanced activation of WNT signaling in certain cases

نویسندگان

  • CHUAN - YOU LI
  • HONG - YUN ZHANG
  • YI - LU GAO
چکیده

Glioma is the most common brain malignancy and has a very poor prognosis. The current treatment options have a minimal benefit on prolonging patient survival time. Accumulating data have shown that the WNT signaling pathway has a critical function in the progression and invasion of glioma. Thus, targeting WNT signaling appears to be an effective anti-glioma strategy. TIKI2 was recently found to suppress the activation of the WNT signaling pathway by post-translationally modifying secreted WNT proteins. The implication of TIKI2 aberrance in cancers and its potential therapeutic effect, however, has not been studied. In the present study, a glioma-specific adenoviral vector was constructed, which was regulated by response elements of miR‐124, to express TIKI2 in glioma cells (Ad-TIKI2-124). Ad-TIKI2-124 was found to potently suppress the activation of WNT signaling in glioma cells. This inhibitory effect on the WNT signaling pathway lead to the reduction in proliferation, colony formation ability and invasion of glioma cell lines. In addition, animal experiments confirmed that the expression of the Ad-TIKI2-124 construct could compromise the tumorigenicity of glioma cells in vivo. Furthermore, this glioma-selective TIKI2 expression protected normal cells from toxicity. In conclusion, the present study demonstrated that adenovirus-mediated TIKI2 therapy may be used for glioma treatment and therefore warrants further clinical studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells

Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...

متن کامل

P-88: Assessing Expression Changes of Some Wnt Pathway Genes During Goat Early Embryonic Development

Background: The developmental competency of embryos is affected by several factors, including the developmental pathways and their elements. In mammalian species including goat, fertilized oocyte undergoes several divisions to form a structure called blastocyst. These events depend on the successful control of temporal and spatial expression of genes involved in genome activation. One of the cr...

متن کامل

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

The Role of Wnt Signaling Pathway on the Expression of TGFβ 1 and TGFβ 2 in Cultured Rat Cortical Astrocytes

Introduction: Astrocytes, the most abundant glia in the central nervous system, modulate neuronal survival and function. Astrocytic functions are mediated by synthesis and secretion of wide ranges of polypeptides through mechanism (s) poorly understood. Among these, TGFβs are synthesized and released by the astrocytes. In this study, the involvement of Wnt signaling pathway on the synthesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014